Left Quotients of a C * - algebra , I : Representation via vector sections ∗

نویسنده

  • Ngai-Ching Wong
چکیده

Let A be a C*-algebra, L a closed left ideal of A and p the closed projection related to L. We show that for an xp in A∗∗p (∼= A∗∗/L∗∗) if pAxp ⊂ pAp and px∗xp ∈ pAp then xp ∈ Ap (∼= A/L). The proof goes by interpreting elements of A∗∗p (resp. Ap) as admissible (resp. continuous admissible) vector sections over the base space F (p) = {φ ∈ A∗ : φ ≥ 0, φ(p) = ‖φ‖ ≤ 1} in the notions developed by Diximier and Douady, Fell, and Tomita. We consider that our results complement both Kadison function representation and Takesaki duality theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left I-quotients of band of right cancellative monoids

Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancell...

متن کامل

IDEAL J *-ALGEBRAS

A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...

متن کامل

On nuclei of sup-$Sigma$-algebras

‎In this paper‎, ‎algebraic investigations on sup-$Sigma$-algebras are presented‎. ‎A representation theorem for‎ ‎sup-$Sigma$-algebras in terms of nuclei and quotients is obtained‎. ‎Consequently‎, ‎the relationship between‎ ‎the congruence lattice of a sup-$Sigma$-algebra and the lattice of its nuclei is fully developed.

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

A representation for some groups, a geometric approach

‎In the present paper‎, ‎we are going to use geometric and topological concepts‎, ‎entities and properties of the‎ ‎integral curves of linear vector fields‎, ‎and the theory of differential equations‎, ‎to establish a representation for some groups on $R^{n} (ngeq 1)$‎. ‎Among other things‎, ‎we investigate the surjectivity and faithfulness of the representation‎. At the end‎, ‎we give some app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004